Finite Dimensional Modules for Rational Cherednik Algebras
نویسنده
چکیده
We construct and study some finite dimensional modules for rational Cherednik algebras for the groups G(r, p, n) by using intertwining operators and a commutative family of operators introduced by Dunkl and Opdam. The coinvariant ring and an analog of the ring constructed by Gordon in the course of proving Haiman’s conjectures on diagonal coinvariants are special cases. We study a certain hyperplane arrangement that determines a weight basis for the irreducible modules in an explicit fashion. Using the same methods we also construct a basis of eigenfunctions for the coinvariant ring for G(r, p, n) whose leading terms are, in the case of G(1, 1, n), the descent monomials studied by Garsia and Stanton.
منابع مشابه
Parabolic Degeneration of Rational Cherednik Algebras
We introduce parabolic degenerations of rational Cherednik algebras of complex reflection groups, and use them to give necessary conditions for finite-dimensionality of an irreducible lowest weight module for the rational Cherednik algebra of a complex reflection group, and for the existence of a non-zero map between two standard modules. The latter condition reproduces and enhances, in the cas...
متن کاملQuasiharmonic Polynomials for Coxeter Groups and Representations of Cherednik Algebras
We introduce and study deformations of finite-dimensional modules over rational Cherednik algebras. Our main tool is a generalization of usual harmonic polynomials for each Coxeter groups — the so-called quasiharmonic polynomials. A surprising application of this approach is the construction of canonical elementary symmetric polynomials and their deformations for all Coxeter groups.
متن کاملApplications of Procesi Bundles to Cherednik Algebras
In this talk we describe some applications of Procesi bundles that appeared in Gufang’s talk to type A Rational Cherednik algebras introduced in Jose’s talk. We start by recalling Procesi bundles, quantum Hamiltonian reductions, and Cherednik algebras. Then we apply Procesi bundles to relating the spherical Rational Cherednik algebras to quantum Hamiltonian reductions. Finally, we study the def...
متن کاملEndomorphisms of Verma Modules for Rational Cherednik Algebras
We study the endomorphism algebras of Verma modules for rational Cherednik algebras at t = 0. It is shown that, in many cases, these endomorphism algebras are quotients of the centre of the rational Cherednik algebra. Geometrically, they define Lagrangian subvarieties of the generalized Calogero–Moser space. In the introduction, we motivate our results by describing them in the context of deriv...
متن کاملBaby Verma Modules for Rational Cherednik Algebras
These are notes for a talk in the MIT-Northeastern Spring 2015 Geometric Representation Theory Seminar. The main source is [G02]. We discuss baby Verma modules for rational Cherednik algebras at t = 0.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006